NPS ARCHIVE
 1968
 GREENEISEN, D.

A DESIGN PROGRAM FOR
 SUPERCOINDUCTING ELECTRICAL MACHINES

by

SUBMITTED TO THE DEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING ITV PARTIAL FULFIIIMENT OF THE REQUIREMTNTS OF THE MASTER OF SCIENGE DEGREE IN ELECTRICAL ENG INEERING AND THE PROFESSIONAL DEGREE, NAVAI ENGINEFR at the

MASSACHUSETTS INSTITUTE OF TECHYOLOGY
May, 1968

A DESIGN PROGRAM FOR

SUPERCONDUCMING ELECTRICAL MACHINES

by

DAVID GREENRISEN

AESIRACT

Submitted to the Department of Naval Architecture and Marine Engineering on May 17, 1968 in partial fulfillment of the requirements for the Master of Science Degree in Electrical Engineering and the Professional Degree, Naval Enginoor.

This paper presents a procedure for the design of superconducting electrical machinos. The magnetostatic field problem of a cylindrical superconducting machine is solved. Equations for the magnetic fields are developed, and from these, exprossions for the various machine parameters are obtained. These exprossions are adapted to a computer solution of the design problem. The computer program obtains the design paramoters for a minimum volume machine dosign.

A design study for a typical marine electrical propulsion systom is conducted. The results of this study indicate quantitatively the reduction in woight and space to be obtained in using suporconducting electrical machines vice conventional elcctrical machinory: The study aiso presents somo gonoral characteristics of superconducting mackines.

Thesis Supervisor: H. H. Voodson
Title: Professon of Eloctionl Engineeming

LIST OF FIGURES

page

1. Machine cross section v
2. Current-flux relationship for a typical superconductor. 5
3. Distribution of current sheet $K(r)$ 7
4. Distribution of armature current sheet 9
5. Vector diagram of generator voltages. 15
6. End-turn geometry. 17
7. Shield flux pattern 19
8. Generator specific weight 30
9. Motor specific weight 31
10. B $\mathrm{e}_{\text {rax. }}$ /const. vs. y. 44
11. Variation of $R_{o s}$ with R_{0} 50
12a. Data stored in OUPPT 61
l2b. Points calculated by MIN 61
12. Error in B 68
13. Error in B $\rho_{\text {max }}, p=4$ 69
14. Error in $\mathrm{B}_{\mathrm{P} \text { max }}, \mathrm{p}=5$. 70
15. Error in B p max,$p=6$ 71

IIST OF SYMBOLS

hp	Horsepower
kw	Kilowatts
1	Electrical length of windings
1_{m}	Effective length of windings for mutual inductance calculations
I_{t}	Total length of mindines
p	Number of pole pairs
r	Radial dimension
t	Thickness
X	R_{i} / R_{0}
y	R_{1} / R_{2}
B	Magnetic flux donsity
H	Magnetic fiold intensity
I_{a}, I_{i}	Curront in armature and fiold windings
J_{a}, J_{f}	Average current density in armature and field windings
K	Surfaco current density
L_{a}, L_{f}	Fundemental self-inductance of armature and field windings
M	Fundamental mutual inductance between armaturo and field wjondings
$\mathrm{N}_{a} \mathrm{~N}_{5}$	Number of turns in amature and fiold windings
P_{g}	Internaliy generatod power
P_{0}	Power output

Figure I Machino cross soction

$R_{\text {os }}$	Outside radius of shield
R_{s}	Inside radius of shiold
R_{0}	Outsido radius of armature
R_{i}	Insido radius of armature
R_{2}	Outsido radius of field
R_{1}	Inside radius of field
Δ	$R_{i}-R_{2}$

λ	Flux linkage
δ	$\frac{R_{i}-R_{2}}{R_{0}}$
θ	Power factor angle
μ_{0}	Pemneability of free space
ω_{θ}	Electrical angular velocity
ω_{m}	Mechanical angular velocity
ρ_{f}, ρ_{a},	ρ_{S}Densities of naterial in field, armature and shield

ACKNONLEDGEMENI

Any significance attaching to this paper rosults from the guidance of Professor H. H. Woodson, whose efforts made this exercise a meaningrul learning experience.

TABLE OF COITELTS

page
TITLE PAGE 1
ABSIRACT. ii
LIST OF FIGURES. iii
LIST OF SYMBOLS iv
ACKIVOILEDGEIEMT vii
I. INPRODUCIION
A. Background. 1
B. Ithe Role of Superconductors 2
C. Dosign Program. 6
II. PROCEDURE
A. Development of a Model. 7
B. Design Equations 15
C. Design Jimitations 18
III. RESUITS 22
IV. DISCUSSION OF RESUIRS 32
V. CONCIUSIONS AND REOOHENDATJONS
Conclusions 35°
Recommendations 35
Fecommendea Modification to Subroutine MITM. 37
VI. APPEMDIGES
A. Input Data. 39
B. Input Data fon Field Indine Design 41
Program for Dotemmining Data in Array $B(p, y) 45^{\circ}$
Subroutine progran for Detomining y from Arrey B 48
C. Dosign Progran 49
Main Linc Program. 57
D. Subroutine to Find tho Minirum Volumo Design 61
Subroutine Program for Dotermining R_{0} for Minimum Volume Desiegn. 64
E. Effect of the Shield on Maximum Flux Donsity 66
BIBLIOGIAPHY 72

I. INTRODUCTION

A. Background

The rolative flexibility and simplicity accruing to electrical power systems, in comparison to mechanical power systems, has long been recognized. Specifically, electrical power, and transmission systems provide flexibility of installation, are easily suited to automation and have a high degree of dependability.

Despite these advantages, and others that could be obtained, the full benefit of electrical power systoms has not been realized in marine propulsion applications. To be sure, electric drive systems have been used in ship propulsion, however, such use has been mostly linited to small or intermediato size propulsion plants. The primary reason that electric drive systems have not been adopted for large power plants has been that the woight and space for such systems is greater than that required for geared propulsion sysṭems. In addition, increasod cost (as much as 20\%) and lower efficiency (85% for $D C$) have been contributory factons (1) \%

It is advantageous to consider some of the benefits that coula be obtained with olectric propulsion in oyder that espects of its utilization might be juaged in proper perspective.

As mentioned above, an electric propulsion system affords greator flexibility of installation. In constirest with a conventional goared propulsion systern, oxtensive shafting is not

[^0]required and the location of the power source is not as restricted. In addition, the large, noisy roduction gear could be oliminated. The noise generated by this component is of increasing military significance.

If a cycloconvertor* is usod, aciditional benefits derive. It would be possible to use a constant frequency generator, thus pormitting a more efficient design of the prime-mover. This will also permit greater use of newly developed power sources such as the gas turbine. Added to this would be more adaptation of remote and automatic controls, plus much improved maneuvering characteristics. $(2,9)$

Thus it seems that if the disadvantages (weight, space, and possibly efficiency) of electric propulsion are reduced, it will be given greater consideration as an alternative to gearod propuision in larger power systems.

B. The Role of Superconductoxs

It has been realized for some time that when the temperature of an electrical conductor is reduced to a few degroos absolute, the resistance of the conductor decroases to an unmeasurable emount. The implications of this fact havo consideroble value for use in electrical machines. If the resistance in the rindings of an electrical genomator or motor is romoved, mach greater current densitios can be achievod with an accompanying increase in tho macnetic flux densitios within the machino.(3) Jf this

[^1]increase in flux density is obtained, then greater power can be generated within a given volume. Thus it follows that the volume of an olectric machine can be roduced if superconducting windings are used. Studies to date, (3) havo domonsirated the significant reduction in volume and woight in superconducting machinos.

However, the application of suporconductivity is not without its complications. The first quostion which must os asked. concerns the method of operating a machine wherein all, or at least some, of its parts are at a temperature in the region of liquid helium.

It is at this point converiont to limit the scope of the examination. The ensuing discussion will treat only machines with a rotating field winding, operating in the superconducting region, enclosed by a stationary armatume at arbjent temperature. This pareicular configuration is only one of several that could be considered.

Thero are two particular reasons why this configuration is selected. The more obvious is that j.t would be impractical to transfer the high machine power output incough slip rings, as would be nocossary if the amoture were rotading. Tre other poason results from the fact that Jarge hoat lossos aro encounterod when suponconductors ane subjocted to altomating curiones. (3) Thus, only the field winding is made superconducting.

Nongthoiess, most of the fechmquos in this paver aro gencrally aprlicoble to eny ourliamiosl aloctrical devioo.

With the discussion constrained to considering a rotating superconducting field winding, it is possiblo to dilineste somo design procedure. Thus far, it has been found that the use of a thermal bottle, or dewar*, fillod with liquid helium and oncompassing the rotor, is a satisfactory solution to the problem of maintaining the windings in a superconducting state. Several techniques are under development for introducing the helium into the rotating dewar and passing eloctrical leads into the low-temperature region. Generally it is farorable to use the liquid helium dewar in conjunction with a Iiquid nitrogen dewar imodiatoly oxterior. Tho helium maintains tho rotor at about $4.2^{O_{\mathrm{K}}}$ while the nitrogen offers a $77^{\circ} \mathrm{K}$ buffer for improved cryogenic perfomance. At firsi, one might think that the refrigeration load for maintaining such iow temporaturos would bo excossive. However, it should be realizod tint once the low temperatures are obtained, there is very Inttle heat generated by the windings. Indeed, hoat introduced into the Iow-temperature region through the shaft and support structure is more significant. A reasonable estimate of the power requirements for refrigoration during operation of a superconducting machine would bo about 0.5 percont of roted power.

In addition to the requiroment that a superconductor be maintained at a low tomperature, thore is a limitation on the amount of curront carried while exposed to a magnetic field. As indicaicd in Figure 2, if the magnotic siux density increascs,

[^2]the permissible current density is reduced. If current or field exceed the limits imposed (the so-called critical values), the conductor reverts to its normal state. Thus it is necessary, in any particular machine design, to determine that combination of maximum flux density and current density which best suit the design.

Figure 2 Current-Flux Relationship for a Typical Superconductor

The vory fact that a superconducting machinc develops extremely intense magnetic fields invites yet another complication. Since fields of the order of several kilogauss can be expocted within the machine, disurmbance of equipment in the vicinity of the machire will certainly result, as well as unbalanced loads on the superconducting field winding. Therefore, it is nocossary that a shield be provided to confine the magnetic fiolds wiohin the machine.

This shield would typically be of laminated steel construction and will be a significant portion of the sizo and weight of the machine.

C. Design Program

Though superconducting machines of the size suggested by the foregoing discussion have not yet been built, they are certainly feasible. Anticipating the construction of such machines, it is considered desirable to investigste some of their oxpectod properties. Since there is vosted interest in the reduced size and weight of these machines, it is natural that a design procedure be developed for obtaining minimum weight and volume.

The objective herein is to find a procedure for finding design characteristics of least size machines. The procedure devoloped is founded on a field-thoory solution of the electric machine and is adapted to a computer solution.

II. PROCEDUPS

A. Developmont of a Model

The first step in the analysis was to obtain a
mathematical model for the magnetic fields involvod. This model was necessary to detemine the parameters which would be used in machine design. As mentioned previously, the model and attendant equations are for a rotating field winding inside a three-phase stator winding.

Analysis proceeded by considering both the field and stator windings to consist of cylindrical current shects. Equations for the magnetic fiolds generatod by each winding wero develcpod separately and later combined to obtain necessary inductance and energy expressions.

To illustrate the analysis, consider the field uindinçs. As illustrated in Figure 3, a cylindrical current sheot, $K(x)$. of thickness if, located at somo radius $r, R_{1} \angle r \angle R_{2}$, is examinoch

$$
\text { Fimure } 3 \text { Distribution on Cumont Skot K (x) }
$$

Fourier analysis of this current sheet yields:

$$
\begin{equation*}
\overline{\mathrm{n}}(r)=\sum_{n \text { odd }} \frac{4 J_{f} d r}{n \pi} \sin n p \emptyset \tag{II-I}
\end{equation*}
$$

Knowing that these curront sheots exist between $r=R_{1}$ and $r=R_{2}$, and that the fields associated with each sheot aro Laplacien, onables determination of the field expressions. (5) After finding an expression for the magneitic field for $r \geq R_{2}$, one can find the contribution due to the shield. Since at $r=R_{s}$, with an infinitely pemoable shield,

$$
\begin{equation*}
H_{S \emptyset}=-H_{i \emptyset} \tag{II-2}
\end{equation*}
$$

and at $x=0$,

$$
\begin{equation*}
H_{s \rho}=\text { finite } \tag{II-3}
\end{equation*}
$$

an exprossion is fourd for the fields jnduced by the shield. The oxpression thus obtainod is thon addod to thet for the fields genewated by tio field minding.

This sano procodur obtsing for detemminty the magnetic field systom resultinc from the amoture windings, The anly difference involved is in the current sheet model used, since the amoture is a three-ingse whoning, with 60 onespoo pizese beIts.

Figure 4 Distribution of Armature Current Sheet

Fourier analysis of the armature current sheet yields

$$
\begin{equation*}
K_{a}(r)=\sum_{n o d a} \frac{4 J_{a} d r}{n \pi} \cos \frac{n \pi}{3} \sin n p \eta \tag{II-4}
\end{equation*}
$$

Expressions for magnetic field systems of the field and armature windings are prosentod in Tables $]$ and 2.

Using tho equations for the magnetic fields, an expression for energy stored in the mature field system is obtained from

$$
W_{a}=\int_{0}^{2 \pi} \int_{0}^{R s} \frac{3}{2} \mu_{0}\left(H^{2}+H_{a j}^{2}\right) \operatorname{lp} d p d \xi .
$$

Equating the result in

$$
\begin{equation*}
W_{a}=\frac{I}{2} L_{a} I_{a}^{2}, \tag{II-6}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{a}=\frac{\pi\left(R_{0}^{2}-\dot{R}_{j}^{2}\right) J_{a}}{6 M_{a}}, \tag{II-7}
\end{equation*}
$$

yields an expression for the amature self-inductance. A similar calculation is performed to obtain tho field winding self-inductance.

Mutual inductance is found from

$$
\begin{equation*}
I_{f^{\prime}} L_{a f}=\lambda, \tag{II-8}
\end{equation*}
$$

where λ is the total field-winding flux linkage of the armature windings. By recognizing that $6 N_{a} / \pi\left(r_{0}^{2}-R_{i}^{2}\right)$ expresses tho number of amature turns per unit cross..section, then the second spatinl differonitial of tho flux linkace is expressed by

$$
\begin{equation*}
d^{2} \lambda=\frac{6 \pi}{\pi\left(R_{0}^{2}-R_{i}^{2}\right)} \mu \circ \rho d \rho d \emptyset \int_{\emptyset}^{\infty} H_{f \rho}^{\rho} 1 d p d \psi \tag{II-9}
\end{equation*}
$$

THBIE 1

Wagnetic Field Muatione fon Field Vindinos

$$
n p \neq 2
$$

$P<R_{1}$

$$
\begin{aligned}
& x\left[1+\frac{2 \cdots n p}{2+n p} \frac{R^{n} p+2-2 n p+2}{2 n+2}-\frac{1}{2 n}+\frac{1}{2 n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& X\left[1+\frac{-n n}{2+n n} \frac{n+2}{2 n}-\sqrt{2}-2+1\right]
\end{aligned}
$$

$\because 1<\rho<\therefore$

$$
\left.-(\cdots)\left(\frac{1}{\rho}\right)^{n},(6-1) \frac{\rho}{}\right]
$$

$\underline{R_{2}<\rho<R_{E}}$
$\underline{p<n}$

$$
\begin{aligned}
& \Pi_{\rho}=\frac{2 J_{f}}{\pi} \ln \frac{R_{2}}{R_{1}}\left[1+\frac{1}{4} \frac{R_{2}^{4}-R_{1}^{4}}{R_{2}^{4} \ln \left(R_{2} / R_{1}\right)}\right] \rho \cos 2 \phi \\
& H \phi=-\frac{\sigma_{2}}{\pi} \ln \frac{R_{2}}{R_{1}}\left[1+\frac{1}{4} \frac{R_{2}-R_{1}}{R_{S} \ln \left(R_{2} / R_{1}\right)}\right] \rho \rho
\end{aligned}
$$

$$
\mathrm{R}_{1}<\mathrm{P} \leq
$$

$R=p<$

$$
\begin{aligned}
& H_{e}=\frac{2 J_{f}}{\pi^{2}}\left[\frac{1}{4}\left(1-\frac{R_{1}}{e^{4}}\right) * \ln \frac{R_{2}}{\rho}+\frac{R_{8}^{4}-R_{1}^{4}}{4 a^{4}}\right] \rho=0 \\
& \pi=\frac{20}{\pi}\left[\frac{1}{2}\left(1-\frac{R_{1}}{\rho^{1}}\right)--\frac{20}{\rho}-\frac{R_{2}^{4}-\frac{4}{1}}{4 \alpha_{2}}\right] \rho=\sigma
\end{aligned}
$$

$$
\begin{aligned}
& { }^{H} \rho=\sum_{n \text { odd }} \frac{2 J_{\rho}}{n \pi(2+n p)}\left(R_{2}^{n p+2}-R_{1}^{n p+2}\right)\left[e^{-n p-1}+\frac{e^{n n-1}}{R_{i}^{2} n p}\right] \cos n \phi \phi
\end{aligned}
$$

$$
\begin{aligned}
& n p=2(n=1, p=2)
\end{aligned}
$$

TABLE 2

Magnetic Fiold Equations for
Prase A of Armature iindings
$n p \neq 2$
$\rho<R_{i}$

$$
\begin{aligned}
& H_{e}=\sum_{n \text { oda }} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi(2-n p)}\left(R_{0}^{-n p+2}-R_{i}^{n p+2}\right) e^{n p-1} \cos n p \phi \\
& X \quad\left[1+\frac{2-n p}{2+n p} \frac{R_{0}^{n p+2}-R_{1}^{n p+2}}{R_{0}^{n} p+2-R_{1}^{-n p+2}} \frac{1}{R_{S}^{2} n p}\right] \\
& H_{\phi}=\sum_{n \text { oda }} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi(2-n p)}\left(R^{-n p+2}-R^{-n p+2}\right) e^{n p-1} \sin n p \phi \\
& X\left[1+\frac{2-n p}{2 \dot{n p}} \frac{R_{0}^{n p+2}-R_{1}^{n p+2}}{R_{0}^{-n p+2}-R_{1}^{-n p+2}} \frac{1}{R_{S}^{2 n p}}\right]
\end{aligned}
$$

$R_{1}<P<R_{0}$

$$
\begin{aligned}
& H_{p}=\sum_{n \text { odd }} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi\left(4-n^{2} p^{2}\right)} \rho \cos \operatorname{nos}\left[-2 n_{p}+\left(2+n_{p}\right)\left|\frac{R_{0}}{p}\right|^{-n p+2}\right. \\
& \left.-(2-n p)\left(\frac{R_{1}}{2}\right)^{n p+2}+(2-n p) \frac{R_{0}^{n p+2}-R_{1}^{n p+2}}{R_{S}^{2} n p} e^{n p-2}\right] \\
& H_{\rho}=\sum_{n=0} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi\left(4-n_{n}^{2} p^{2}\right)} e \sin n \operatorname{not}\left[4-(2+n p)\left(\frac{R_{0}}{\rho}\right)\right)^{-n a+2} \\
& \left.-(2-n p)\left(\frac{n_{1}}{p}\right)^{n p+2}-(2-n p) \frac{R_{0}^{n n+2}-n^{n p}+2}{R^{2} n^{2}} e^{n p-2}\right]
\end{aligned}
$$

$R_{0}<p<R_{S}$
$H_{e}=\sum_{n \text { odd }} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi(2+n p)}\left(R_{0}^{n p+2}-R_{\underline{1}}^{n p+2}\right)\left[e^{-n p-1}+\frac{e^{n p-1}}{R_{S}^{2 n p}}\right] \cos n p \phi$
$H_{\phi}=\sum_{n \text { odd }} \frac{2 J_{a} \cos (n \pi / 3)}{n \pi(2+n p)}\left(n_{0}^{n p+2}-R_{i}^{n p+2}\right)\left[\rho^{-n p-1}-\frac{e^{n p-1}}{R_{S}^{2} n p}\right] \sin n p \phi$

$$
n p=2 \quad(n=1, p=2)
$$

$p<R_{1}$
$H_{e}=\frac{J_{a}}{\pi} \ln \frac{R_{0}}{R_{i}}\left[1+\frac{1}{4} \frac{R_{0}^{4}-R_{i}^{4}}{R_{i}^{4}} \ln \left(R_{0} / R_{1}\right)\right] \rho \cos 2 \phi$
$H_{\phi}=-\frac{J_{a}}{\pi} \ln \frac{R_{0}}{R}\left[1+\frac{1}{4} \frac{R_{0}^{4}-R_{i}^{4}}{R_{S}^{4} \ln \left(R_{0} / R_{i}\right)}\right] \sin 2 \phi$
$R_{1}<e<R_{0}$
${ }_{H} \rho=\frac{J_{a}}{\pi}\left[\frac{1}{4}\left(1-\frac{R_{2}}{\rho^{4}}\right)+\ln \frac{R_{0}}{\rho}+\frac{R_{0}-R_{2}}{4 R_{B}^{2}}\right] \rho \cos 2 \theta$
$H_{6 j}=\frac{J_{a}}{\pi}\left[\frac{1}{4}\left(1-\frac{R_{i}}{e^{4}}\right)-\ln \frac{R_{0}}{\rho}-\frac{R_{0}-R_{2}}{4 R_{5}^{4}}\right] \operatorname{esin} 26$

$R_{0}<p<R_{E}$

$H_{\rho}=\frac{J_{2}}{4 \pi}\left(R_{0}^{4}-R_{1}^{4}\right)\left[e^{-3}+\frac{e}{R_{S}^{4}}\right] \cos 2 ;$
$n_{\phi}=\frac{J_{0}}{4 \pi}\left(R_{0}^{4}-P_{i}^{4}\right)\left[e^{-3}-\frac{e}{a_{s}^{4}}\right] \sin 20$

Integrating this expression over the cross-section of the amature yields the total flux linkage and thus the mutual inductance. Expressions for field and armsture selfinductance and mutual inductance are presented in Table 3.

B. Design Equations

If one considers the amplitudes of the Iine-to-neutral armature voltage and armature curpent, one obtains

$$
\begin{align*}
& V_{a}=\omega_{e}^{M I_{f}}, \tag{II-10}\\
& I_{a}=\frac{\pi\left(R_{o}^{2}-R_{i}^{2}\right) J_{a}}{6 N}, \tag{II-II}\\
& P_{g}=\frac{3}{2} V_{a} I_{a}, \tag{II-I2}
\end{align*}
$$

where

$$
\begin{equation*}
I_{f}=\frac{\pi\left(R_{2}^{2}-R_{1}^{2}\right) J_{f}}{2 N_{s}} \tag{II-I3}
\end{equation*}
$$

This power is internally genorated power, which must be reduced, to account for armature impedanco and the load power factor, in order to obtain rated output power.

[^3]TABLE 3.
Inductance Equations

$$
\begin{aligned}
& p \neq 2 \\
& L_{f}=\frac{16 \mu_{0} N_{f}^{2} 1}{\pi \pi^{3} p\left(p^{2}-4\right)\left(1-y^{2}\right)^{2}}\left[(p-2)-(p+2) y^{4}+4 y^{p+2}\right. \\
& \left.+2 \frac{p-2}{p+2}\left(1-y^{p+2}\right)\left(\frac{R_{2}}{R_{s}}\right)^{2 p}\right] \\
& L_{a}=\frac{16 \mu_{0} N_{a}^{2} I}{\pi^{3} p\left(p^{2}-4\right)\left(1-x^{2}\right)^{2}}\left[(p-2)-(p+2) x^{4}+4 x^{p+2}\right. \\
& \left.+2 \frac{p-2}{p+2}\left(1-x^{p+2}\right)\left(\frac{R_{2}}{R_{S}}\right)^{2 p}\right] \\
& M=\frac{48 \mu_{0} N_{2} V_{f} l\left(1-y^{p+2}\right)}{\pi^{3} p\left(1 \cdots x^{2}\right)\left(1 \cdots y^{2}\right)}\left(\frac{R_{2}}{R_{0}}\right)^{p}\left[\frac{1-x^{-p+2}}{4-p^{2}}+\frac{1-x^{p+2}}{(2+p)^{2}}\left(\frac{R_{0}}{R_{S}}\right)^{2 p}\right] \\
& p=2 \\
& L_{f}=\frac{8 \mu_{0} N_{f}^{2} 1}{\pi^{3}\left(1-y^{2}\right)^{2}}\left[\frac{1}{4}\left(1-y^{4}\right)+y^{4} 1 n y+\frac{1}{8}\left(1-y^{4}\right)^{2}\left(\frac{R_{2}}{R_{s}}\right)^{2 p}\right] \\
& L_{a}=\frac{18 \mu_{0} N_{a} 1}{\pi^{3}\left(1-x^{2}\right)^{2}}\left[\frac{1}{4}\left(1-x^{4}\right)+x^{4} \ln x+\frac{1}{8}\left(1-x^{4}\right)^{2}\left(\frac{R_{0}}{R_{e}}\right) 2_{p}\right] \\
& N=\frac{6 \mu_{0} N_{a} N_{a} I\left(1+v^{2}\right)}{\pi^{3}\left(1 \cdots x^{2}\right)}\left(\frac{R_{2}}{a_{0}}\right)^{2}\left[1 n \frac{1}{x}+\frac{\left(1-x^{4}\right)}{4}\left(\frac{R_{0}}{r_{s}}\right)^{2 p}\right]
\end{aligned}
$$

From the vector diagram in Figure 5, whore

$$
\begin{equation*}
x_{s}=\omega_{e} I_{a} \tag{II-I4}
\end{equation*}
$$

the ratio V_{t} / V_{a} is obtained. Then raved power is

$$
\begin{equation*}
P=P_{g}\left(V_{t} / V_{a}\right) \cos \theta \tag{II-15}
\end{equation*}
$$

In developing the equations describing the machine, some approximation was necessary to account for the effects of the end-turns. (10) Figure 6 shows the geometry involved in making this approximation.

If ono considers on outer armature turin at tho moan radius of

of this coil is $4 \pi / 3 p$ radians. Since this coil is at a radius

$$
\begin{equation*}
r=\frac{1}{2}\left(R_{0}+R_{i}\right) \tag{II-16}
\end{equation*}
$$

the approximation can be made that

$$
\begin{equation*}
\Delta I=\frac{1}{2} \cdot \frac{4 \pi}{3 p} \cdot \frac{1}{2}\left(R_{0}+R_{i}\right)=\frac{\pi}{3 p}\left(R_{0}+R_{i}\right) . \tag{II-17}
\end{equation*}
$$

Using this expression, it has been found (6) that a reasonable length to assume for self-inductance calculations is the total longth

$$
\begin{equation*}
I_{t}=I+2 \Delta I \tag{II-I8}
\end{equation*}
$$

whereas the length to be used for mutual inductance is

$$
\begin{equation*}
I_{m}=I+\Delta I \tag{II-I9}
\end{equation*}
$$

C. Design Limitations

As described in the Introduction, the low resistance character of a superconducting coil is not only a function of temperature, but also depends on its current densjty and tho magnetic field to which it is exposed. Thus for a given desien it is necessary to determine tho maxime magnetic fiux density associatod with any particular current density, to ensure that the supereondueting field winding will not revert to its nomal state. The panticulan mechanios emploved to obsomve the
limitation are detailed in the program construction techniques of Appendix C.

As also mentioned in the Introduction, the machine design considered employs a shield (constructed of laminated steel) which contains the dense magnetic fields within the machine. For this shield to be effective, the fields it constrains must be less than those which will cause saturation of the shield. If the shield material saturates at some density $B_{\text {rated }}$, then one limitation is

$$
\begin{equation*}
B_{\text {max }}\left(r=R_{0}\right) \leq B_{\text {rated }} \tag{II-20}
\end{equation*}
$$

Another limitation exists in the requirement that the maximum flux density carried by the shield must never exceed $\mathrm{B}_{\text {rated }}$. As illustrated in

Figuro 7 Shield Flux Pattern

Figure 7, the total flux accumulated by the shield over an angle of $\pi / 2 \mathrm{must}$ not be surficiant to cause saturaiton in the cross.
section at $A-A$. Since

$$
\begin{equation*}
\Phi_{A-A}=\int_{0}^{\pi / 2 p} B_{\rho}\left(R_{0}\right) I R_{0} d \phi, \tag{II-2I}
\end{equation*}
$$

a final constraint is obtained in

$$
\begin{equation*}
\Phi_{A-A} \leqslant B_{\text {rated }}\left(R_{o S}-R_{0}\right) I_{t} . \tag{II-22}
\end{equation*}
$$

There are two final consioerations mich may govern a machine dosign. First, the heat dissipation in the armature winding must be considored. Generally the maximum pemissible current will be determined from the limitations imposed by the method adopted foi cooling the armaturo. For purposes of this design it was assumed that an average armature current density of $1.6 \times 10^{6} \mathrm{amp} / \mathrm{m}^{2}$ could be accepted with chilled water cooling of the winding. Finally, one must consider the speed of the machine rotating parts. The strength of the ro:or structure will provide a limit to the rotor tip speed that can be sustained. On consideration of previous conventional machine dosign it was detomined that $700 \mathrm{ft} / \mathrm{sec}$ wes a reasonable upper value for tip speod. However, since methods of consimucting superconducting windings are far from being fixed, this valve for maximum tif speed is spoculative. The tip speod of the rotor will also bo governed by the performanes of the rototing dowar. In this respoct, the fluidic and themodymamio properties of Iiquid helium, under hish contrifugal fonoes, Whll goven. sinco the
aspects of this considoration are yot to be dotermined, it is assumed here that the previously stated maximum tip speod is acceptable.
III. RESULTS

Tho significance of this work lies in the results or a design study which was conducted, employing the design procedure described in Part II. The design study involved what was considered a typical marine electrical propulsion system; a turbine driven generator rated at 26 MF (35,000 hp) at 3600 rpm, and two direct drive propulsion motors rated at 17,500 bht (13 Mir) at 300 rpm . Other paranoters assumed wore:

$$
\begin{aligned}
& J_{f}=1.0 \times 10^{8} \mathrm{amp} / \mathrm{m}^{2} . \\
& J_{a}=1.6 \times 10^{6} \mathrm{mpp} / \mathrm{m}^{2} \\
& B_{\text {max }}=\quad 5.0 \mathrm{web} / \mathrm{m}^{2} \\
& B_{\text {rated }}=\quad 2.0 \mathrm{web} / \mathrm{m}^{2} \\
& \rho_{\mathrm{f}}=4000 \mathrm{~kg} / \mathrm{m}^{3} \\
& \rho_{a}=\quad \quad \begin{array}{|cc|}
4000 \mathrm{~kg} / \mathrm{m}^{3} \\
(c o p p e r \text { with } .45 \text { packing factor) }
\end{array} \\
& \mathrm{e}_{\mathrm{S}}=\quad \begin{array}{l}
8000 \mathrm{~kg} / \mathrm{m}^{3} \\
(\text { steel })
\end{array} \\
& \delta=.05
\end{aligned}
$$

Tip speeds of up to $214 \mathrm{~m} / \mathrm{sec}(700 \mathrm{ft} / \mathrm{sec})$ wore considered in both the generator and motor designs. Also, for tho generator, designs with power factors of $1.0 . .850$ and .70 ? wore examined. Design characteristics of machines with
it to 6 polo pains wore computed for all variations.

The computer results and graphs of the characteristics of some of the more interesting designs are included in the following pages.

One quantity, not calculated by the computer prograri, thet should be examined is the machine efficiency.

Since

$$
\begin{equation*}
R_{a}=\frac{P_{r} N_{a} I_{t}}{A_{x}} \tag{III-I}
\end{equation*}
$$

where $\rho_{r}=$ resistivity $=1.9 \times 10^{-8}$ ohm-m and cross-section area is

$$
\begin{equation*}
A_{x}=\frac{\pi\left(1-x^{2}\right) R_{0}^{2} \cdot .45}{6 N_{a}} \tag{III-2}
\end{equation*}
$$

for a .45 packing factor, then for the optimurn generator $\operatorname{design}\left(p r=.707, p=6, V_{t i p}=214 \mathrm{~m} / \mathrm{sec}\right)$

$$
R_{a} / H_{a}^{2}=6.7 \times 10^{-8} \text { ohm } / \text { tum }^{2} .
$$

Knowing $\mathrm{I}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$, it is possible to find

$$
I_{a} R_{a}=965 \text { watts. }
$$

These losses, however, are for only one phase and were computed with a peak vaine for I_{a} instead of rms. Thorefore, resistive losses for all three phasos are

$$
I_{a}^{2} R_{a}=965 \cdot \frac{3}{2}=1450 \text { watts. }
$$

If an equal amount is allowed for eddy curment losses, a figure of 2900 watts is obtained for the total Iossos. Since this 3 for a 26 lif generatore this loss will cause a negligible roduction in officuonct.

$$
\begin{aligned}
& \text { VI } \\
& (M W)
\end{aligned}
$$

$$
30.7
$$

KG／M3
KG／M3
KG／M3-
5
3V23739
5206n
0
0
0$6 \cdot 697$3
$>$
31.3431.550$2 \cdot 476$POUT
NMW：
25.7
25.925.9$25 \cdot 7$
26.0
ZW／甘 60 ヨOT•OZW
NIA
A－TURNS）
$0.13 E 05$
$0.46 E O b$U．12E 16$0.21 E 05$$0.32 E 06$$\cdot 589$
$\cdot 006 T$
Neni／2.1160 .057585.
130. 322.2.8230 .435
2.1200 .705 4.2853 .045GET•O GEG•I
ROSOご・
 20
(n)
$050 \cdot 0$3.6580 .012
$: G N$
6630ヨロハ

I $1+2)$
xyw
$0=w r$
$0 \pm \pm 5$
$G=0$

Figure 8
Generator Specific Weight

Figure 9
Moter Specific Weight

IV. DISCUSSION Or ReSUITS

The most significant result of this study lies in the low values of specific weight ($\mathrm{lb} / \mathrm{hp}$) for superconducting machines. As indicated in Figure 8 specific woights on the order of $0.25 \mathrm{lb} / \mathrm{hp}^{*}$ are theoretically possible in machines of the size typically found in maxino propulsion plants.

The results of the study of direct-drive propulsion motors were less conclusive. It is apparent from Figure 9 that specific weights of $1.40 \mathrm{lb} / \mathrm{hp}$ are possible and that much lower specific weights are likely to be achieved in machines with larger numbers of poles and highor tip speeds. Nonetheless a specific woight of 1.40 is still an improvement over a conventional machine. This ỉ evident from a comparison with the data for the propulsion motor in the USS Furiloy, AS-31, given in Table 4.

hp	15,000
pole pairs	26
rpm	157
lb/hp	1.0 .9

Trable 4 Characteristics of Propulsion Motoz of USS Fimnley AS...31(21)

Consideration of the rosults of the genorator desiens
indiantes that in high spood machines, maxinum tip spoed will
"Compared to 4.0 Lb/he fore conventional gomorators.
bo a limit in machine desigr. Howevor, this is not likely to be the case in lowor spood machines such as the dzrect drive motor.

Machine characteristics such as low x_{a} and high efficiency are expected as a result of the smaller amount of amature winding required.

Aside from the significance of the data given for the various machine designs, there were two other notable results of this work. As described in the procedure for doternining the field winding design (detailod in Appendix B), in order to reduce the number of varjables involved it was assumed that the fields induced by the shield did not affect Bpmax. However, the study conducted in Appendix E indicates that in some instances (espocially for small values of p; this assumption is not warpanted. From Pigure 16 it is found that for the optimum genorator design $(x=.822$, $y=.848, p=6$) the errox introduced is about one percent, whereas for the optimum motor $(x=.801, y=.887, p=6)$ the error is about .80 percent. These accuracies are oxpected to be much greator than the accuracy of the mathematical model being usod.

Anotiner result that becarne evident during the design study was that the linear interpolation technique used to find the minimum volure design (described in fippendix D) was not sufficiently accurate in all instances. Sinco the minima of the volume vs. R_{0} curve is quite broar for
$\mathrm{p}=1$ and 2, the linear interpolation yielded crroneous results in a fow dosigns.

The accuracy of solution provided by the dosign progran (within the limits imposed by the assumptions as discussod in Appendices B and E) is arbitrory. In the design study, a variation of 1 tr in output power was allowed. Iikewise, in instances of solving for maximum flux density, the rate of change was required to be less than 10^{-4} at the calculated maximum. By changing these tolerences, the designer can obtain the accuracy dosired in the solution.

v. CONCLUSIONS AND RECOMIENDATIONS

From the results of this study, the following can be concluded:

1. Superconducting electrical machines should provide considorable savings of woight and space in olectrical propulsion systems.
2. The electrical efficiency of superconducting machines is substantially higher than the officiency of conventional machines.
3. The solution of the design problem for a superconducting machine can bo made at least as accurate as the design of a conventional machine.
4. High spoed machines will be limited in speed of rotation by the maximun tip speed that can be sustainod by the rotating ports.
5. An optimum design for a slow speed machine wili require a large muber of poles.

In the conduct of further invostigation of the optimal design problem, of in application of the design program presented here, the following is recommended:

1. The body of data (ampy $B(p, y)$) representing the graph of ${ }^{B}$ praxflconst. vs. Y, should be expanded to account fow lurger values of p.
2. Tine design progrem should be modiried to allow
 opti um nochine dosign may ocour for somo valuo or VTEP
that is less than the maximun VIIP. By searching over a range of this variable, a numerical techniquo could easily bo used to find the optimum design.
3. When a design is obtained, it is necessary to onsure that the error in $B_{p \text { max }}$, as described in Figures 13 to 16 , is not excessive. It may be desirable to incorporate these figures in tho dosign program, as wes done with array $B(p, y)$. It would then be possiblo to check each design within the program, making appropriate adjustment in the design paraneters until a satisfactory result is obtamed.
4. To ensure greater accuracy in the subroutine MTN, describer in Appendix D, a false position solution techaique (7) should be substifuted for the linear intompolation method. A basic routino, such as the one prosented on the following page, might be considered.
$\operatorname{RO}(1)=$ OUTPT $(1,3)$
PROPOSED MODIFICATION TO SUBROUTINE MIN
(A $F(P-2) 2,1,2$
$00101=192$
$R O S=C I /(R O(I) * * P)+R O(I)$
$L T=P G *(R O(I) * *(P-2)) / C O$
$X=R I / R O(5)$
COMPUTE D(ROS**2)/DRO
$A=-2 * P *(C I * * 2) /(R O * *(2 * P+1$
$G=(-\operatorname{ALOG}(x)+1(1-x * * 4) / 4) / 4$ GOTO
$G=(1-x \div(2-P)) /(4-P * 2)+(1-X \div(P+2)) /((2+P) * 2)$ $B=C O / G$

$$
\operatorname{IF}(\vec{P}-2) 5,4,5
$$

COMPUTE DCO/DRO $=C$ C
$C=(B *(1+X * *)) /(4 * R O)$
GO TO 6
$C=B *(X * *(2-P)+X * *(P+2)) /(R O *(2+P))$
$D=(P-2) \div P G *(R O *(P-3)$
COMPUTE DVOL/DRO = DVOL.
DVOL (I) $\because P I * L T * A+P I *(R O S * * 2) * D$
IF:STAR-1)11,12012
DO 16 $K=1.100$
$S T A R=1$
 1-DVOL(2))
$\begin{array}{ll}-1 & 3\end{array}$
() \pm
$n \cup \infty \cup \underset{r-1}{\infty}$

IF(ABS(DVOL(3))-1:E-04)17,17,13
IF(DVOL(3) NDVOL(2) $114,17,15$
IF $(D V O L(3)$ ニDVOL $(2)) 14,17,15$
$R O(1)=R O(3)$
the subroutine returns to the main program with this ro
$\begin{array}{lll}\operatorname{Nan} & \text { in } & \text { in } \\ r-1 & r-1 r-1\end{array}$

APPETYDIX A

Input Data

In organizing the machina program that was ultimately used, it was necessary to anticipate what information was likely to be available or fixed for the machine design. It was anticipated that cextainly the desired power output would de know. The engular velocity of the rotor and power factor of the load may also be determined from particulars of the intended machine application. Further, it was oxpected that materials selection would procede this portion of a design, therefore various matcrial characteristics will be available. Also expected is some knomledge of construction tecinniques to be employed, e.g. the type of amature cooling used and cheracteristics of the rotor design. Finally, somo infomation conceming the dowar is necessary. Specifically the anticipatod thicknoss of the dewar wall must bo provided. Thus, input data will include:
a. powor output, P_{0}
b. mechanical froquency, ω_{m}
c. maximum armature current density, J_{a}
d. dowar wein thickness, Δ
e. naximun tip speod of dowax, $V_{\text {tipp }}$
(fixed by strongth considerations in rotor design or linitations imposed by dowar technology)
f. power ractor, pr
g. flux density to cause shiold saturation, $B_{\text {rated }}$
h. average density of rotor, armature and shield, f_{f}, f_{2}, f_{S}
As mentioned in the Introduction, the superconalucting material used in the ficld windings will have charactoristic values of critical current and critical flux density. Therefore, additionel invet data will be a valuo of curpent density in the field windings, J_{f}, and the associated value of critical flux density, $B_{m a x}$.

For any ficld vinding design, the geometry of the magnetic fields can be found. If J_{f} is know, the maximum flux density can bo calculatod. Ihis maximurn flux density must be found to ensure that it does not exceod the criticel flux density associatod with $J_{f}\left(B_{M}\right.$ a $\left.x^{\prime}\right)$.

Convoraly, ift J_{s} and B max are given, certain limitations on field windine desimn are imposed.

It was found expedicnt to proviclo a body of data which could bo used in the computer program for finding the best field minding design for some given $J_{\hat{i}}$ and $B_{m a x}$. The method for obtaining and utilizing this date is doscribed in Appondix B.

APPRNDIX B

Input Data for Field Windint Design
In the design of the field windings, three assumptions are made. First it is assumod that the fundamental component of the magnetic fields is the significant part. This assumption is fairly standard and has been shown to be acceptable. Second, it is assumed that the fields generated by the armature may be neglected. Since the armature fields oppose the fields generated by the field windings, this approximation is conserva'ive. Third, it is assumed that the fields reflected by the shield may be neglected. Although these fields add to those from the field winding, they are small, bocoming instynificant as pincroases. These approximations are made in order to decroase the number of variables in the calculations.

From Table I, it is seen that in the region $R_{1}<Q<R_{2}$ the maximum field intensity will be in the p-direction for $\varphi=0$. In accordance with the above approximations, for $p \geqslant 2$,

$$
H_{e}=\frac{2 J_{s}}{\pi\left(4-p^{2}\right)}\left[-2 p \div(2 \div p)\left(\frac{L_{2}}{\rho}\right)^{-p+2}-(2-p)\left(\frac{R}{\rho}\right)^{p+2}\right] \rho
$$

or

$$
\begin{align*}
& \frac{B}{\text { const }} \equiv \frac{B_{Q} e^{\pi}}{2 \mu_{0} J_{f} R_{2}}=\frac{1}{\left(4 \cdots p^{2}\right)}\left[-2 p \frac{p}{R_{2}}+(2 \div p)\left(\frac{p}{R}\right)^{p-1}-(2-p) y^{p+2} x\right. \\
& \left\langle\left.\frac{R_{2}}{p}\right|^{p^{-1}}\right] \tag{B-2}
\end{align*}
$$

If, for a given value of y,

$$
\begin{equation*}
\frac{d\left(B_{p} / \text { const. }\right)}{d\left(\rho / R_{2}\right)}=0 \tag{B-3}
\end{equation*}
$$

is solved for (ρ / R_{2}), and the value obtained used to evaluate Eq. (B-2), the maximin value of Be/const. is obtained for that y.

For the case $p=2$

$$
\begin{equation*}
H=\frac{2 J_{f}}{\pi}\left[\frac{1}{4}\left(1 \cdots \frac{R_{I}^{4}}{e^{4}}\right) \div \ln \frac{R_{2}}{e}\right] e \tag{B-4}
\end{equation*}
$$

and

$$
\frac{B}{\text { const. }} \equiv \frac{B e^{\pi}}{2 \mu_{0} J^{R} 2}=\frac{1}{4}\left(\frac{\rho}{R_{2}}-r^{4}\left(\frac{R_{2}}{\rho}\right)^{3}\right)+\frac{\rho}{R_{2}} \ln \frac{R_{2}}{\rho}
$$

Thus, if R_{2} is known, it is possible to obtain

$$
\begin{equation*}
\frac{{ }^{B} p_{\max }}{J_{f}}=f(p, y) \tag{B-6}
\end{equation*}
$$

In the following computer program, for the IBII II 30, ${ }^{B} \rho \mathrm{max}^{/ c o n s t}$, is computed for values of $p=2$ to 6 and $y=0.05$ to 0.95 . Tho results are displayed graphically in Figure 10. Using these results, it is possible to find the value of y corresponding to a given B e max/const: thus fixing the radial dimensions of the field windings. The case $p=I$ is not computed since for this value of p

$$
\begin{equation*}
\text { Bp may iccost }=2 \ln \tag{B-7}
\end{equation*}
$$

In the program, the following notation is used:
$p=$ number of pole pairs
$y=R_{1} / R_{2}, R_{1}$ is the inside field radius, etc.
$R=e / R_{2}, i .0 . R I$ in the program is the first value of ρ / R_{2} and is not the inside field radius.
$B=B \rho /$ const :
$B M A X={ }^{B} \rho_{\mathrm{max}}$ /const.
The program proceduxe is simply a solution of Eq. (B-3) and evaluation of $\mathrm{Eq} .(\mathrm{B}-2)$ or Eq . ($\mathrm{B}-5$) for tho raximum value. For the case $p=2$ a false position method (7) is used to solve Pq. (B-3), wheraas the Nowton-Raphsor tochnique ${ }^{(8)}$ is employed for all cases $p \neq 2$.

The printed results of this program include values of p, y and B max const. winich aro usod in the dosign program. The data represents tho curves in Fofure 10. Within the design program, B prat/const, is computed, with which it is then possible to obtain from the curves a valuo of y which will satisiy the constraint imposod by the current and crotacal slux donsity.

The proyram used to solve for the date in the array $B(p, y)$, and tins subroutine used to interprot $B(p, y)$ to find a value for y, are ircluded in the following pages.
$-44-$

$R=0, N=\cdot, 20$

| 0 |
| :--- | :--- |
| 0 |
| 11 |
| 0 |

$A=1 P *$
$P * * 2-P-2) *(Y * *(P+2))$
米 $(P+1))$

I/ XEQ
// END

 $\begin{array}{lll}0 & 0 & \infty \\ 0 & 0 & m \\ 0 & n & -1 \\ 0 & 0 & \infty\end{array}$

oorminrawmへoa
 ○Oomwanrymmun

 oonao. ow ono ns

// FOR

	SUBROUTINE INTRP(Y) INTEGFR
	DIMENSION $\mathrm{B}(6,20)$, OUTPT $(50,14)$
	COMMON $B, P, B C, C I, J, O U T P T, ~ P I ~$
	$M=2$
1 I	IF (B) P,M)-BC) 3, 4, 2
2	$M=M+1$
	GO TO I
30	$Q=(i M-1)+(B(P, M-1)-B C) /(B(P, M-1)-B(P, M))$
	$Y=0,200$
	GO TO 5
4	$Y=M / 20$.
$5 \quad \mathrm{P}$	RETURN
	ENO
// DUP	
*STORE	WS UA INTRF

APPENDIX C

Dosign Program

The design computer program, written for the IBR 1230 , is an iterative solution of the basic design equations to find that machine desien which requires the least volume.

The program uses the normalized variables x and y which represent the thickness of the amature and field windingra. The variables R_{2} and R_{0} serve to fix the radial location of the windings. The machine length is found from consideration of the working volume required to obtain the necessary internally gererated power. The reduction from intemal power to rated power is obtained from Eq. (II-I5). The itorative procedure followed is based on varying values of R_{0}, which was found to be the most conveniont parametor for this purpose.

Since

$$
\begin{equation*}
\text { VoI. }=\pi R_{o S}^{2} I_{t} \tag{C-I}
\end{equation*}
$$

the variation of $R_{0 s}$ with R_{0} was first examined. By evoluating Eq. (II-2I) and substituting in Eq. (II-22) one obtains

$$
\begin{align*}
R_{o s} & =\frac{4 \mu_{0}^{J} I_{1}\left(\ldots y^{p+2}\right)\left(\frac{R_{2}}{R_{0}}\right)^{p+2} R_{0}^{2}}{\pi p 3_{0}^{2}+r_{0}(2)} \quad * R_{0} \quad(0-2) \\
& \equiv \frac{C_{1}}{R_{0}^{p}}+R_{0} \tag{0-3}
\end{align*}
$$

Figure 11 Variation of $R_{0 S}$ with R_{0}
For small values of R_{0}, the shield is in the vicinity of intense magnetic ficlds and $R_{\text {os }}$ must be large. As R_{0} increasos, the thickness of the shield decreasos but r_{0} is still larger than R_{0}. The value of R_{0} which requires the smallest $R_{o s}$ is found to be

$$
\begin{equation*}
\mathrm{R}_{0 \text { opt. }}=\left(\mathrm{pC}_{1}\right)^{1 / p+1} \tag{c-4}
\end{equation*}
$$

Though this value of R_{0} does not nocessarily yield a minimum volume rachine (since no variation of I_{i} is considered), it is genorally near the minimun volume value because of the siçnificance of $R_{0 s}$ in Eq. (C-I).

An R_{0} obtainod from Eq. (C-4.) will satisfy the constrain'u or Eq. (II-22). Hoverer, it must also satisity Eq. (II-20).

Since

$$
\begin{equation*}
B_{\max }\left(r=R_{0}\right)=\frac{4 \mu_{0} J_{f}}{\pi\left(2^{f} \rho\right)} \quad\left(1-y^{p+2}\right)\left(\frac{R_{2}}{R_{0}}\right)^{p+2} R_{0} \leq B_{\text {rated }} \tag{C-5}
\end{equation*}
$$

it is required that

$$
\begin{equation*}
R_{0} \geq\left(C_{I} / p\right)^{I / p i I} . \tag{c-6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\mathrm{R}_{0}^{\mathrm{p}^{+1}} \mathrm{opt} .=\mathrm{pC}_{1} \geq \frac{\mathrm{C}_{1}}{\mathrm{p}}, \tag{c-7}
\end{equation*}
$$

Eq. (II-20) is also satisfied.
Turning now to the design program, the following procedure is carried out for successive values of p :

From the input date, one obtains

$$
\begin{align*}
& R_{i}=v_{t_{i p}} / \omega_{m}, \tag{c..8}\\
& R_{2}=R_{i}-\Delta . \tag{c-2}
\end{align*}
$$

Evaluating

$$
\begin{equation*}
\mathrm{B}_{\text {max }} \text { /const. }=\frac{\mathrm{B}_{\text {mated }} \pi}{2 \mu_{0}{ }^{J} \mathrm{I}_{2}} \tag{C--10}
\end{equation*}
$$

and entering the curves on B madconst. W. Y. described in Appendix B, a value of y is obtained. With this information it is possible co evaluate C_{1} and rind R_{0} opt which is used to calculate an initial machine design.

Having selected a value for R_{0} ono obtains

$$
\begin{equation*}
x=\frac{R_{2}}{R_{0}} \tag{C-11}
\end{equation*}
$$

At this point in the progran, the differonce botween the internally generated power and the desired power output is unknown. Assuming that this difforenco is largely due to load power factor, it is approximatod that

$$
\begin{equation*}
P_{g}=P_{0} / p f \tag{C-12}
\end{equation*}
$$

Since

$$
\begin{align*}
P_{E} & =\frac{3}{2} V_{a} I_{a} \tag{c-13}\\
& =\frac{3}{2} \omega_{e} M I_{I} I_{a} \tag{C-14}
\end{align*}
$$

where

$$
\begin{align*}
\omega_{0} & =p\left(\omega_{m}\right. \tag{C-15}\\
I_{I} & =\frac{\pi\left(I-y^{2}\right) R_{2}^{2} J_{f}}{2 N_{I}} \tag{c-1.6}\\
I_{a} & =\frac{\pi\left(I-x^{2}\right) R_{0}^{2}}{6 N_{a}} \tag{C-I7}
\end{align*}
$$

and the appropriato expression for M is selectod from Table II, one obtains

$$
\begin{align*}
P_{g}= & \frac{6 \mu_{0} \omega_{m} a^{J}}{n}\left(1-y^{n+2}\right)\left(\frac{R_{2}}{R_{0}}\right)^{p+2} I_{m a} x \\
& {\left[\frac{1-x^{-p+2}}{4-p^{2}}+\frac{1-x^{p}+2}{(2 p)^{2}}\right] R_{0}^{4} } \tag{c-18}
\end{align*}
$$

for $p \neq 2$, or

$$
\begin{equation*}
P_{g}=\frac{3}{2} \frac{\mu_{0} \omega_{m} J_{a}^{J} I_{r} I_{n}}{\pi}\left(1-y^{4}\right) R_{2}^{4} \cdot\left[\ln \frac{1}{x}+\frac{1-x^{4}}{4}\right] \tag{C-19}
\end{equation*}
$$

for $p=2$. From Eq. (C-18) or Eq. (C-I.9), it is possible to solve for I_{m}. Then, in accordance with Eq, (II-I8) and Eq. (II-19),

$$
\begin{align*}
I_{t} & =I_{m}+\Delta I \tag{C-20}\\
& =I_{m}+\frac{\pi}{3 p}(I+x) R_{0} . \tag{C-21}
\end{align*}
$$

It is now possible to find the reduction in power from P_{g} to P_{0}. Applying the law of cosines to tho diagram in Figure 5 results in

$$
\begin{equation*}
V_{a}^{2}=V_{t}^{2}+\left(x_{s} I_{a}\right)^{2}-2 V_{t} x_{s} I_{a} \cos \left(\frac{\pi}{2}+\theta\right) . \tag{c-22}
\end{equation*}
$$

Normalizing, one obtains

$$
\begin{equation*}
\left(v_{t} / V_{a}\right)^{2}+x_{a}^{2}-2 v_{t} / v_{a} x_{a} \cos \left(\frac{\pi}{2}+\theta\right)-1=0 \tag{C-23}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{a}=x_{s} I_{a} / V_{a} \tag{c-24}
\end{equation*}
$$

is the per unit armature reactance loss. If ic 。 (Co-23) is solved for V_{i} / V_{a}, then Eq. (II-75) can be evaluated for P_{0}.

The value of P_{0} thus obtained is compared with the value specified in the input dato. If the difference is greater than a given tolerance (1 th of the desired value, for the program, the values of E_{g} ascrmen in Ing. (0-7)
is increased (or decreased) by the percentage difference between actual and desired output power (see statement 30 in the design program). The program then returns to Eq. (C-18) or Eq. (C-19), and calculation continues in this fashion until an acceptable difference is reached.

When a satisfactory P_{0} is obtained the program continues with calculation of

$$
\begin{align*}
& R_{o s}=\frac{C_{I}}{R_{O}^{p}}+R_{0} \\
& \text { Vol. }=\pi R_{o s}^{2} I_{t} \\
& \text { Weight }=\pi I_{t}\left(\left(I-y^{2}\right) R_{2}^{2} \rho_{f} *\left(I-x^{2}\right) R_{0}^{2} \rho_{a}+\left(R_{o S}^{2}-R_{o}^{2}\right) \rho_{s}\right) \\
& \text { (c-25) } \\
& V_{t} / N_{a}=V_{t} / V_{a} \cdot V_{a} / N_{a}=V_{t} / V_{a} \text {. } \\
& =\frac{24\left(v_{n} \mu_{0}^{1} n_{n}\left(1-y^{p+2}\right)_{2}^{p: 2} J_{I}\right.}{\pi^{2}\left(1-x^{2}\right) R_{0}^{p}} x \\
& {\left[\frac{1-x^{-p+2}}{4-p^{2}}+\frac{1-x^{p+2}}{(2-p)^{2}}\right]} \tag{c-26}
\end{align*}
$$

for $p \neq 2$, or

$$
\begin{align*}
V_{t} / N_{a}= & V_{t} / T_{a} \cdot \frac{6 \omega_{n} \mu_{0} I_{n}\left(1-g^{4}\right) R_{2}^{4} J_{n}}{\pi^{2}\left(1 \cdots \pi^{2}\right) R_{0}^{2}} x \\
& \left(\operatorname{In} \frac{I}{x}+\frac{1}{4}\left(1-x^{4}\right)\right) \tag{0-27}
\end{align*}
$$

for $p=2$, and

$$
\begin{equation*}
N_{a} I_{a}=\frac{\pi\left(1-x^{2}\right) R_{0}^{2} J_{a}}{6} . \tag{C-28}
\end{equation*}
$$

The calculations described above are carried out for the initial value of R_{0}. The program continues by incrementing R_{0} (by 0.1 in this program), returning to Eq. (C-11) and repeating all the steps through Eq. (C-28). To continues to be incremented until it is found that the volume for successive designs is increasing, which indicates that the minimum volume design is within the range of those designs that have been completed. The program then calls a subroutine, described in Appendix D, which evaluates the date for the designs that have been completed, and from this data detomines the minimum volume design.

```
Within the design program, the following notation is used:
    PHR = desired Po
        POUR = actual Po
        B(p,y)=orray of data roprosenting the graphs
                        in Figure 10
                OUTPT कf armay in which parameters on each dosign
                        are stored
                BC = B f,max/const.
                XA = unmiommalized axmatume rocictarce, which
                        becomes nomalized when stored in OUTPr.
VAOIT = Va/INa
VONT = W/iva
```

$$
\begin{aligned}
& \mathrm{PG}=\mathrm{P}_{\mathrm{G}} \\
& \text { ROS }=\mathrm{R}_{\mathrm{OS}} \\
& \text { VOL }=\text { Volume } \\
& \text { WGT }=\text { WoIght } \\
& \text { NIA }=\mathrm{N}_{a} I_{a}
\end{aligned}
$$

A print-out of the sourco deck for the design program is included in tho following pages.
*IOCS (CARD, TYPEWRITER, KEYBOARD, 1132 PRINTER, DISK) INTEGER P
REAL JF, JA, PWR, MU, L, LV, LT, NIA
OIMENSION B $(6,20)$, OUTPT $(50,14)$ OLMENSION B(6,20), OUTPT(50,14) COMNON B, P, BC, Cl, J. OUTPT, PI WEAD (2.1.O) ($\left.\left.B\left(P, V_{i}\right), M=1,20\right), P=1,6\right)$ FORMAT (1) (F5.4,2X))

READ (2, 21) VTIP, OMEGA, DELTA, BMAX, PFANG, BRATE, DENSF

FOPMAT (7(FIO.4))
READ (2,110) DFNSA, DENSS, EPWR, EJF, EJA
FORMAT (5:FIO.4))

$J A=E J A *(100 * * 6)$
F $\because R=E P W R *(10$ - $\because * 6)$
$P I=3014159$

$P I U=!P I \% 4 \theta)!(100$ 谷 7)
$R I=V T I P / O M E G A$
$R 2=R I-D E L T A$
DO ICO $P=1: 6$
 1DENSA
$\begin{array}{lll}0 & r-3 & F \\ -1 & H & H\end{array}$
$-$
\cdots
m
m

SSNJ
$=1$,
AAD. $6 X, \quad$ B RATED $=1, ~ F 4 \cdot 1,1$!EB/

 I($\mathrm{M}!!$) $/$)
$U=P$
WITH BMAX/CONST, DETERMINE ALLOWABLE Y.
$B C=(R M A X * P I) /(2 * J F * M U * R 2)$ CALS INTRD (Y)
$C l=(4 *$ 付 $\because \mathcal{J F} *(1-Y * *(P+2)) *(R 2 * *(P+2))) /(P * P I * B R A T E *(2+P))$ $j=1$
$F L A G=0$
$S T A R=0$
START WITH THE VALUE OF RO TO GIVE A MINIMUM ROS.
$E X P=1 \cdot /(U+10)$
$R O=(U K C I)$ K $\because=X P$
TO ACCOUNT FOR POWER FACTOR ASSUME
$P G=P W R / C O S(P F A N G)$
IF $(P-2)$ 22, 21, 2?
$A=(-A L O G(X)+(I-X * 4) / 4) / 4$ GO TO 23
 CO = ($6 * M$ NOMEGA* UA*JF*
$L M=P G *(R O * *(P-2)) / C O$
$D L=(P I *(I \therefore x) * R O) /(3 * P)$
$L T=L M+D L$
COMPUTE THE ARMATURE LOSS• (XA)
IF (D-2) 26, 25, 26

$X A=(6 * M U * O M E G A * L T *(R O * 2) * J A * D) /((P I * * 2) *(1-X * 2))$
GO TO 27
$D=(P-2)-(P+2) *(X * 4)+(4 *(X * 2 *(P+2)))+2 *(P-2) *(1-X *(P+2)) * * 2) /$
$X A=(6 \div M U \div O M E G A \div L T(R O * * 2) * J A * D) /((P I * * 2) *(P * * 2-4) *(1-X * 2))$
$\stackrel{H}{n}$
Nm
(N N
FROM THE LAW OF COSINES, GET A QUADRATIC TO SOLVE FOR THE VOLTAGE vtova) VT/VA CTANCE.
 RE
 TURE
u \quad o

$\stackrel{2}{4}$

[^4]
APPENDIX

Subroutine to Find the Minimum Volume Design
After the dosign program computes throe designs of successivoly increasing volume, it calls the subroutine MIN. The data stored in ourpr at this time will include at least two designs beyond the minimum volume design.

Figuro 12a Data Stored in OUTPT

Fitume I2b Foind Colcumbed by illt

The program computes $\mathrm{dVol} / \mathrm{dR}$ o for the three values of R_{0} that bracket the minimum volume design.

Since

$$
\begin{equation*}
\text { Vol }=\pi R_{o s}^{2} I_{t} \tag{D-1}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\partial V o l}{\partial R_{o}}=\pi R_{o s}^{2} \frac{d I_{t}}{\partial R_{0}}+\pi I_{t} \frac{d\left(R_{o s}^{2}\right)}{\partial R_{o}} . \tag{D-2}
\end{equation*}
$$

Considering Equations ($\mathrm{C}-18$), $(\mathrm{C}-19)$, and $(\mathrm{C}-21)$, it is possible to express

$$
\begin{equation*}
I_{t}=\frac{P_{g}}{C_{0}} R_{o}^{p-2}+\frac{\pi}{3 p} \quad\left(R_{0}+R_{i}\right) \tag{D-3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{0}=f(x) . \tag{4}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{d l_{t}}{d R_{0}}=(p-2) \frac{P_{g}}{C_{0}} R_{0}^{p-3}-\frac{P_{g}}{C_{0}^{2}} \frac{d C_{0}}{d R_{0}} R_{0}^{p-2}+\frac{\pi}{30} \tag{D-5}
\end{equation*}
$$

and, from Eq. (C-3),

$$
\begin{equation*}
\frac{\partial\left(R_{0 S}^{2}\right)}{\partial R_{0}}=-2 p C_{J}^{2} R_{0}^{-2 p-1}+2 C_{1}(1 \cdots p) R_{0}^{-p}=2 R_{0} \tag{D-6}
\end{equation*}
$$

When values of BVOL for R_{01}, R_{02} and R_{03} have been computed, liners interpolation is used to find the value of R_{0} for which DVOL $\left(R_{0}\right)=0$. Control then return to the main design progroun wo me the design chamatoristics for this vane of R_{0} are found.

A print-out of the source deck for this subwoutine is included in the follwoing paces.
SUBROUTINE PROGRAM FOR DETERMINING RO FOR MINIMUM VOLUME DESIGN

$$
\begin{aligned}
& \text { COMPUTE O(ROS } * 2) / D R O=A \\
& A=-2 * P *(C 1 * * 2) /(R O * *(2 * P+1))+2 * C 1 *(1-P) /(R O * * P)+2 * R O \\
& B=C O / O U T P T(K-4,14)
\end{aligned}
$$

$$
C=(3 *(1+x * 4)) /(4 \div 2 O ;
$$

$$
\begin{aligned}
& \text { COTO } 9 \\
& C=F:(X * *(7-P)+X *(P+2)) /(R O *(2 \div P))
\end{aligned}
$$

$$
\begin{aligned}
& \text { COMPITE ULT/DRO }=0.0 \\
& D=(P-2) * P G *(R O * *(P-3)) / C O-P G * C *(R O *(P-2)) /(C O * * 2)+(2 * P I) /(3 * P)
\end{aligned}
$$

OVOL (YO) =PI*LT*A + PI* (ROS $\because 2) * 0$
$K=K+$?
CONTINUE
U
ω
ふ () -
$2 C$

$$
\begin{aligned}
& B=C O / O U T P T: K-4,14 \\
& F(P-2) 8,7,8
\end{aligned}
$$

$$
\text { COMPUTE DCO/DRO }=C
$$ CO:PUTE DVOL/DRO = DVOL.

$$
\begin{aligned}
& \text { FOR } \\
& \backslash \\
& \underset{H}{\infty} \quad \text { rict }
\end{aligned}
$$

APPENDIX E

Effect of the Sliold on Maximum Flux Density
As described in Appendix B, the assumption was made, in detemining characteristios of the fleld windings, that the effect of the shielding could be neglected. The significance of this assumption is examined as follows:

If Be /const. is computed, as in Appendix B, without neglecting shield effect, the result is

$$
\begin{align*}
& \frac{B_{p}}{\text { Const. }}=\frac{1}{(4-p L)} \quad\left[-2 p\left(\frac{p}{R_{2}}\right)^{p}+(2+p)\left(\frac{p}{R_{2}}\right)^{p-1}-(2-p) y^{p+2} x\right. \\
& \left.\quad\left(\frac{R_{2}}{\rho}\right)^{p / 1}+(2-p)\left(1-y^{p+2}\right)\left(\frac{R_{1}}{R_{0}}\right)^{2 p}\left(\frac{\rho}{R_{2}}\right)^{p-1}\right] \quad \text { (E-1) } \tag{E-I}
\end{align*}
$$

for p $;$ 2, and

$$
\begin{align*}
\frac{B}{\text { Const. }}= & {\left[\frac{1}{4}\left(\frac{\rho}{R_{2}}-y^{4}\left(\frac{R_{2}}{\rho}\right)^{3}\right) \div \frac{\rho}{R_{2}} \ln \frac{R_{2}}{\rho}+\frac{1}{4}\left(1-y^{4}\right) x_{1}\right.} \\
& \left.\left(\frac{R_{2}}{R_{0}}\right)^{4} \frac{\rho}{R_{2}}\right] \tag{E-2}
\end{align*}
$$

Recognizing that

$$
\begin{equation*}
\frac{R_{2}}{R_{0}}=\frac{R_{2}-\Lambda}{R_{0}} \quad=x-\delta \tag{2-3}
\end{equation*}
$$

whero

$$
\begin{equation*}
\delta=\frac{\Delta}{r_{0}} \tag{3-4}
\end{equation*}
$$

Eq, (I-L) and Eq. (E-2) can we wituon in toans of tro
normailzed pacaratione x, y nrid δ

Assuming that δ is constant over a range of machine sizes, it is possible to compute the actual $B \rho$ max $/$ const. in terms of x and y. The solution technique is the same as that described in Appendix B. One can then compare the value of B e max const. obtained from the simplified equations with that value obtained from the method described above.

The results of such a comparison are displayed in the following graphs. The data is for the cases of $p=3$ to 6 , which are of most interest.

Figure 13

Figure 14

Figure 15

Figure 16

BIBLIOGRAMFY

1. Sibley, E. H., Frankel, E. G., Reynolds, J. M., "Superconductivity: Status and Implications for Marine Applications", Paper Mo. 8, Symposium on Marjino Powor Plants, Socioty of Naval Architects and Harine Erigineors, (liay 1966).
2. Matjasko, L. S., "Control of Superconducting Machines for Ship Propulsion", S.M. Thesis, Naval Architccture, liassachusetts Institute of Technology, 1968.
3. Janes, C. F., "Superconductors for Shipboard Eower Applications", Paper presented at Fourth Anmual Technical Symposiur of Association of Seniox Engineors of Naval Ships System Command", (Marich 1966)
4. Rissick, H., The Fundamental Theory of Aro Convorters, London: Chapman and Hall, 1939.
5. Avco-rverett Research Loboratory, Researcir and Dosign of Superconductive and Cryogenie viectronic porer Generator, Hinal Lechnical Report Contract No. DA-44-009-NC-236(T), Evorett, Mass., (Januacy 1065).
6. Woodson, H. H., Stokly, Z. J. J., Halas, E. "A Study of AItcmatoms with Superconducting Field "indings", I.E.E.E. Transactions, PAS-85 (Tanch 1966).
7. HoCracken, D. D., Dorn, W. S. s Numorical Iothocis and Porbran Procinamina, ilow York, Wileys 1965.
8. Necrackens D. D. A Guide to Fortran IV Promiomming, New Yoks, Wiley, 1965.
9. Troshchey, I. I., "O Iyekotroikh Osobyemmostyakn Sinkhronnoi liashini so Sverimprovodyashanai Conotroj. Vozboorhdoniya", miertrichostvo II, 1967.
10. Voldek, A. I., "Osnovi Fotodiki Raschota llamiztnikh Pulyai Lobovikh Chastyai Obmotok Elowticheskikh Mashin", Dlekitrichastvo I, I963.
11. Burford. H. M., Kock, R, L., Vestbrook, J. D., "Poriormenco of a Dieset Electoric A. G . Promulsion Plant", Hampton Rosds Soction, Soodeby or
 (octovor 1962) DUDLEY KNOX LIBRARY

[^0]: *Mubers in mancnthoses indionto apolicable refomonce in the bibizoerapiy.

[^1]: volbage and iremoney. Goe mororonn 4.

[^2]: *ivaned antier the invembor

[^3]: Pisume 5 Tectox Diagnam of Genmraton Voltages

[^4]: 0
 w
 品

